in absolute EtOH using W-j Raney nickel ${ }^{17}$ catalyst. The catalyst was removed by filtration and the EtOH was evaporated at reduced pressure. The residue was recrystallized from petroleum ether $\left(60-70^{\circ}\right)$ affording $0.5 \mathrm{~g}(42 \%)$ of desired amino alcohol 3: $\operatorname{mp~149-1.51}{ }^{\circ} ; \operatorname{ir}\left(\mathrm{CHCl}_{3}\right), 2.78,2.96,3.33,3.41,3.50$, $6.25,6.35,6.70,6.92,7.40,9.85,10.66 \mu ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right), \delta 7.70$ (multiplet, aromatic ortho protons), 7.34 (multiplet, aromatic meta and para protons $), 3.00\left(W 1 d_{2}=19 \mathrm{cps}\right.$, axial methine proton at C-3). Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{33} \wedge \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2(a)-Phenyl-trans-decalin-2(e),3(e)-diol 3-Tosylate (12), To 9 ($1.05 \mathrm{~g}, 0.0043$ mole), dissolved in 20 ml of anhydrous pyridine, was added p-toluenesulfonyl chloride ($2.0 \mathrm{~g}, 0.01$ mole) and the solution was allowed to stand at room temperature for 48 hr . $\mathrm{H}_{2} \mathrm{O}$ was added and the resulting oil was scratehed with a glass rod to promote crystallization. The solid was removed by filtration and recrystallized from petroleum ether $\left(60-70^{\circ}\right)$ affording $1.0 \mathrm{~g}\left(38 \%_{c}\right)$ of tosylate 12: $\mathrm{mp} 99-100^{\circ}: \operatorname{ir}\left(\mathrm{CHCl}_{3}\right), 2.78,3.42$, $3.50,6.27,6.70,6.92,7.40,8.5 \overline{3}, 9.13,11.74,10.33,10.82,11.25$, 11.62. 11.93 $;$; nmr (CCl_{3}), $\delta 7.2-8.0$ (multiplet, aromatic protons), 4.80 (quartet, $J_{\text {as }}=11 \mathrm{cps}, J_{\text {a }}=6 \mathrm{cps}$, axial methine proton at ($\mathrm{C}-3$), 2.43 (singlet, ArCH_{3}). Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{95} \mathrm{SO}_{4}\right) \mathrm{C}, \mathrm{H}$.

3(a)-Amino-2(a)-phenyl-trans-2(e)-decalol (2)--Compound $12(1.0 \mathrm{~g}, 0.0025$ mole) was placed in a steel bomb and the bonb was cooled in Dry Ice-MeyCO. Tu the bomb was added ca.
(17) 11. R. Billica and H1. Adkins in "Organic Syntheses." Coll. Vol. 1I1, E. C. Horning. Ed.. John Wiley and Sons, Inc., New York. N. Y.. 1955. f 180 .

100 ml of liquid NH_{3}. The bomb was sealed and heaced at $12{ }^{2}$ for 24 hr . The pressure was released and the residue was dis. solved in CHCl_{3}. The CHCl_{3} solution was filtered and the solvent was evaporated. The residue was rearystallized from petroleum ether $\left(60.70^{\circ}\right)$ affording $\left.0.30 \mathrm{~g}(50)_{c}\right)$ of amino alcohol 2: mp) $116-117^{\circ}$; ir (CHCl $), 2.79,2.97,3.34,3.42$, 3.51, 6.2.5, 6.35), $\left(5.71,6.92,7.40,9.85,10.01,10.28,10.67 \mu ;\right.$ unur $\left(\mathrm{ClOCl}_{3}\right), \delta 7.43$ (multiplet, aromatic protons), 3.83 (Wi $=6$ eps, equatorial methine proton at (-3). Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{NO}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3(e)-Amino-2(e)-phenyl-trans-2(a)-decalol (4),-Compound 15 (1.0 g 0.004 mole) was dissolved in 100 ml of absolute EtOH sathrated with NH_{3} and material was hydrogenated moder io $\mathrm{kg} / \mathrm{cm}^{2}$ of H_{2} nsing $\mathrm{W}-5$ Raney Ni catalyst. ${ }^{1}$ (The catalyst was removed by filtration and the solvent was evaporaled at reduced pressure. The residue was chromatographed on silica gel CMerck $0.00-0.20 \mathrm{~mm}$) eluting wioh cyclohexane-FtoAc (1:1) affording $0.5 \mathrm{~g}(50 \%)$ of desired amino alcohol 4: $\mathrm{mp} 146-148^{\circ}$: ir $\left(\mathrm{CHCl}_{3}\right), 2.78,0.95,3.34,3.52,3.51,(0.25,6.34,6.70,6.12,7.63$,
 ibread singlei, aromalie probons), $3 . \therefore$ ($\mathrm{If}^{\circ}=10$ (p) meshine proton al C-3). Inal. ($\left(\mathrm{C}_{6} \mathrm{H}_{y s} \mathrm{NO}()\right)(\mathrm{C}, \mathrm{H}, \mathrm{N}$.

Acknowledgment. - The anthors gratefnlly acknowl. edge support of this project by the National Institutes of Health Grant He-08555. The authors wish to express their appreciation to Dis. J. B. LaPidus and P. N. Patil and Mr. S. Hetey for performing the vas deferens assays.

Synthesis and Myotrophic-Androgenic Activity of Substituted $2 \alpha, 3 \alpha$-Methano-5 α-androstane Derivatives ${ }^{1}$

Manfred E. Wolff, Shete-Yany Cheng, and Winston Ho
Department of Pharmaceutical Chenistry, School of Pharmacy, Unwersity of California, San F'rancisco, California 94122

Received February 1r, 1968

Abstract

The preparation and androgenic-myotrophic testing of analogs of 17 having substituents on the cyclopropyl ring were undertaken in an effort to obtain information regarding the steric and electronic requirements in the A ring of anabolic-androgenic androstanes. Treatment of 17β-hydroxyandrost-2-ene acetate with ethyl diazoacetate in the presence of anhydrous CuSO_{4} gave $2 \alpha, 3 \alpha$ - $(\beta$-carbethoxymethano) 5α-androstan- 17β-ol acetate which was converted to a variety of substituted cyclopropane derivatives. The most potent is the aldehyde 15 which is more active than testosterone propionate in the myotrophic test and is much less androgenic.

Studies in this laboratory have resulted in the proposal ${ }^{2}$ that anabolic-androgenic androstanes are bound to their receptor by a β-face π-bond to an sp^{2} system in the A ling. The pronounced anabolicandrogenic activity of $2 \alpha, 3 \alpha$-methano- 5α-androstan17β-ol (17) ${ }^{2}$ was taken as evidence for this hypothesis. Recent work ${ }^{3 a}$ on steroidal episulfides, bioisosteric with these methano steroids, has shown that the $2 \alpha, 3 \alpha$ isomers indeed have high parenteral activity, whereas the $2 \beta, 3 \beta$ isomers are essentially inactive. This is in harmony with our proposal. ${ }^{31}$ On the other hand, $2 \alpha, 3 \alpha$ - and $2 \beta, 3 \beta$-steroidal difluorocyclopropanes have similar activity. ${ }^{4}$

To gain further information in this area, the preparation of analogs of $\mathbf{1 7}$ having altered electron
(1) (a) This investigation was supported in part by a Public Health Service research grant (AN-05016) from the National lnstitute of Arthritis and Metalowic Diseases. U. S. Public Health Service. (b) Portions of this work are taken from the Ph.D. thesis of S..I. Cheng. University of California, San Francisco, 1966.
(2) M. E. Wolff, W. Ho, and R. Kwok, I. Med. Chem., 7, 575 (1964).
(3) (a) P. D. Klimstra, E. F. Nutting, and R. F.. Counsell, ibid., 9, 693 (1966). (b) The Searle group did not interpret their data in this way,
(4) (a) 1.. 11. Knox, E, Velarde, S. Berger, 1), Cuadriello, P. W. L.andis, and A. 1). (russ, J. Am. Chem. Soc., 85, 1851 (1963): (1) l . A. Kincl and 12. I:. Dorfnan, stervidy, 3, 109 (1964).
density at the sp^{2} centers was undertaken. If a π bond is important, the strength of the binding would be different in such analogs. Since β-face binding is assumed to be involved, the preparation of substituted cyclopropane analogs of 17 should be feasible since the substituent groups should not interfere sterically with drug receptor binding.

The synthetic plan involved the preparation of $2 \alpha, 3 \alpha$-carbethoxymethano- 5α-androstan- 17β-ol acetate (7) as a common intermediate for the other derivatives. This material was prepared by the reaction of 17β-hydroxyandrost-2-ene acetate ${ }^{5}$ (2) with ethyl dazoacetate. Although carbene intermediates have been proposed in the reaction of diazo compounds with olefins, ${ }^{6}$ the reaction failed when the reagents were heated at $120-180^{\circ}$, or were irradiated in toluene or hexane solution with a medium-pressure mercury arc. On the other hand, a 45% yield of 7 was realized when the reagents were heated in the presence of anhydrous CuSO_{4}. These results point. to
(\$1 A. Bowers, A. D. Cross, J. H, Edwards, H. Carpio, M. Calzada, and F. Denot, J. Med. Chem., 6, 156 (1963).
(6) J. Hine, "livalent Carlon," The Ronald l'ress Co., New York, N. Y". 1964, p 122.
the intervention of an organocopper intermediate rather than a carbene, but further research is needed to clarify this point.

$1, \mathrm{I}=\mathrm{H}$
$2, \mathrm{R}=\mathrm{Cl}$
2, $\mathrm{R}=\mathrm{Cl}_{3}$

3, isomer A
4 , isomer B

$\mathbf{5 , R}=O H ; \mathrm{R}^{\prime}=0 \mathrm{OL}$
$11, \mathrm{R}=\mathrm{II} ; \mathrm{R}^{\prime}=\mathrm{OH}$
6, $\mathrm{R}=0 \mathrm{H} ; \mathrm{R}^{\prime}=0$
12, $\mathrm{R}=\mathrm{H} ; \mathrm{R}^{\prime}=\mathrm{O}$
7, $\mathrm{R}=\mathrm{OC}_{2} \mathrm{H}_{\mathrm{s}} ; \mathrm{R}^{\prime}=\mathrm{OAc}$
$13, \mathrm{R}=\mathrm{CH}_{3} ; \mathrm{R}^{\prime}=\mathrm{OH}$
14, $\mathrm{R}=\mathrm{CH}_{3} ; \mathrm{R}^{\prime}=\mathrm{O}$
$\mathbf{9}_{\mathbf{9}}, \mathrm{R}=\mathrm{OCO}_{2} \mathrm{C}_{2} \mathrm{H}_{5} ; \mathrm{R}^{\prime}=0$
$\begin{aligned} 9, R & =\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~N} ; \mathrm{R}^{\prime}=\mathrm{O} \\ 10, \mathrm{R} & =\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~N} ; \mathrm{R}^{\prime}=\mathrm{OH}\end{aligned}$

15, $\mathrm{R}=\mathrm{CHO}$
$16, \mathrm{R}=\mathrm{CH}_{2} \mathrm{OH}$
17, $\mathrm{R}=\mathrm{H}$

The configuration of the cyclopropane ring and substituent in 7 was established in the following manner. The presence of a single C-19 methyl resonance in the nmr spectrum indicated that only one isomer was at hand. Moreover, the expected position of this isomer could be calculated by use of the Zürcher values ${ }^{7}$ for substituents in 5α-androstane and by the Tori equation ${ }^{8}$ for calculating the anisotropic shielding effect of the cyclopropane ring.

$$
\Delta \delta(\mathrm{ppm})=-6.67 \times 10^{-30} \mathrm{~cm}^{3} \sum_{i=1}^{3} \frac{3 \cos ^{2} \theta_{i}-1}{R_{i}{ }^{3}}
$$

where R_{i} is the distance in \AA between the midpoint of a $\mathrm{C}-\mathrm{C}$ bond of the cyclopropane ring and a $\mathrm{C}-19$ proton and θ_{i} is the acute angle which the line R_{i} makes with the $\mathrm{C}-\mathrm{C}$ bond. An expected shielding of +0.273 ppm was calculated by the Tori equation for $2 \beta, 3 \beta$ -methano- 5α-androstane, whereas the corresponding effect in the $2 \alpha, 3 \alpha$ isomer was calculated to be only +0.010 ppm . Experimentally, in compounds 6-8, 10, and 16, the effect of the cyclopropane ring was found to differ by only -0.049 to +0.011 ppm from the Zürcher values. ${ }^{\mathrm{l}}$, These results are compatible only with a $2 \alpha, 3 \alpha$ fusion.

Chemical studies were in harmony with this assignment. Thus a modified Hunsdiecker reaction ${ }^{9,10}$ on 6 gave a mixture of the epimeric bromides 19 as shown by the $n m r$ spectrum. The formation of two bromides is not unexpected in view of the probable free-radical mechanism of this reaction. ${ }^{11}$ Reduction of 19 with

[^0]lithium tri- t-butoxyaluminohydride followed by reductive dehalogenation of the mixture of halides in the presence of Raney nickel gave 17 identical in all respects with an authentic sample, ${ }^{2}$ together with a single isomer of starting material. Thus it is clear that the least hindered cyclopropane is formed in the addition reaction, and therefore we assign the β configuration to the carboxyl group as well. ${ }^{12}$ The α position is hindered by interaction with protons at the 1α and 5α positions. It is also evident that these same factors are involved in the difference in stability of the two bromides toward catalytic reductive dehalogenation, but it is not possible to specify which isomer reacts preferentially.

Hydrolysis of 7 gave the acid 5 which was oxidized to the ketone 6 with Jones reagent. This was subjected to a modified Curtius ${ }^{13}$ reaction in order to obtain the corresponding amine. The mixed anhydride 8 could be isolated and upon treatment with sodium azide smoothly gave the amine 12 . Reduction at C-17 with NaBH_{4} gave the 17β-alcohol 11 .

One of the goals of this work was the formation of a cyclopropene ring fused to C-2 and C-3, in order to study the consequences of increasing the p character of the 2 and/or 3 carbon. Possible routes to the desired cyclopropenes included dehydrohalogenation of halocyclopropanes ${ }^{14}$ and Hofmann elimination of cyclopropylamines. ${ }^{15,16}$ The required quaternary amine $\mathbf{1 4}$ was prepared by quaternization of 12 with methyl iodide and alkali. However, no cyclopropenes were obtained from either method of preparation, in spite of very careful work-up procedures.

The reaction of the mixed anhydride 8 with ethylenimine gave the amide 9 . Reduction with LiAlH_{4} gave the aldehyde $\mathbf{1 5}$ and the alcohol 16. The last compound was also obtained by reduction of 15 with NaBH_{4}. The preparation of both isomers of $2,3-$ methano- 5α-estran-17 β-ol 3 and 4 by means of the Simmons-Smith reaction is included in the Experimental Section.

Discussion

The data from the pharmacological testing ${ }^{17,18}$ are displayed in Table I. The most active compound is the cyclopropyl aldehyde $\mathbf{1 5}$, which is more active than testosterone propionate or the corresponding unsubstituted cyclopropane derivative 17 in the myotrophic test. At the same time, the compound has low androgenic action.

The next ranking compound in activity is the hydroxymethylene derivative $\mathbf{1 6}$ which has more than 10% the activity of testosterone propionate in the myotrophic test and less than 10% in the androgenic assay. Compound 16 has roughly one-tenth the activity of $\mathbf{1 5}$ in both tests.
(12) The usual α, β dotted-solid-line convention is employed to descrile the cyclopropane substituent. The β substituent is attached to the uppermost bond in the planar structural formula.
(13) J. Weinstock. J. Org. Chem., 26, 3511 (1961).
(14) C. L. Osborn, T. C. Shields, B. A. Shoulders, J. F. Krause, H. V. Cortezand, and P. D. Gardner. J. Am. Chem. Soc.. 87, 3158 (1965).
(15) N. Y. Demyanov and N. N. Doyarenko, Ber., 66, 2200 (1923).
(16) N. J. Schlatter, J. Am. Chem. Soc., 63, 1733 (1941).
(15) Pharmacological tests were performed at The Endlocrine Laboratories, Madison, Wis.
(18) L. G. Hershberger, E. G. Shipley, and R. K. Heyer, Proc. Soc. I:xptl. Biol, Med., 83, 175 (1953).

Tablef I
Androgenic-Myotrophic Assiy

Comphl (total dose, mg)
Castrate control
Testosterone propionate (0.3)
p
$3(3.0)$
p
$4(3.0)$
p

Castrate control
Testosterone propionate (0.3)
p
$\vdots(3.0)$
p
$11(3.0)$
p
Castrate control
Testosterone propionate (0.3)
p
$\frac{5}{7}(6.0)$
p
$7(6.0)$
p
Castrate control
Cestosterone propionate (0.3)
p
10 (3.0)
p
13 (3.0)
${ }_{i}^{p} .5(0.3)$
${ }^{\mu}$
$1(j$ (3.0)
${ }^{p}$
$1 s^{\prime \prime}$
p
Castrate control
Testosterone propionate (0.3)
${ }^{p} 17$ (0.3)
p

Androgenic-Myotrophic Assis				
$\begin{aligned} & \text { Ventral } \\ & \text { prostate } \end{aligned}$	$\begin{gathered} \text { Weminal } \\ \text { Sesicle } \end{gathered}$	L.evator ania	Androgenic	Myotrophic
	Series A			
14.0 ± 0.70	11.5 ± 11.71	28.2 ± 1.37		
35.4 ± 2.00	24.4 ± 1.81	$40.0=1.8 .5$		
<0.001	<0.01	<0, 01		
18.5 ± 0.46	$16.5 \pm 1.0 \%$	35.8 ± 1.13	<0.1	- 11.1
(1.02	0.02	0.02		
20.9 ± 2.70	15.5 5 土 1.48	32.8 ± 2	0	1
180	NS	NS		
	Series B			
14.1 ± 0.95	11.8 ± 0.31	27.3 ± 0.75		
44.7 ± 3.31	31.6 ± 1.89	41.0 ± 1.11		
<0.001	<0.001	<0.001		
17.3 ± 2.64	12.6 ± 0.74	23.3 ± 1.77	11	0
NS	NS	>0.05		
19.2 ± 0.98	19.6 ± 0.39	31.1 ± 0.81	<0.1	<0.1
<0.02	<0.001	<0.02		
	Series C			
$16.1 \pm 1.0 .5$	11.5 ± 0.37	24.2		
41.5 ± 4.62	27.4 ± 3.79	42.1 ± 3.17		
<0.01	<0.01	<0.01		
$12 . \overline{5} \pm 0.05$	9.8 ± 0.14	26.0 ± 0.78	0	1
0.02 decrease	0.01 decrease	Ns		
15. 0 ± 0.89	12.2 ± 1.09	36.0 ± 2.81	1	<0.0i
Ns	N	0.01		
	Series 1)			
18.0 ± 0.67	12.1 ± 1.01	26.5 ± 1.60		
34.8 ± 4.06	16.8 ± 1.17	32.4 ± 1.07		
<0.01	<0. 012	<0.02		
16.0 ± 0.70	14.4 ± 1.70	$2.5 .7 \pm 3.92$	1)	0
NS	Ns	NS		
14.2 ± 0.49	12.1 ± 0.54	19.9 ± 3.21	0	$1)$
<0.01 decrease	Ns	N		
$22.2=1.25$	21.8 ± 0.27	$83.1: \pm .07$		
<0.02	<0.001	Ca. 0.001	<1, 0	-1.11
$24.8=3.76$	19.3 ± 1.02	$49 . \therefore \pm 1.41$		
Ns	Ca. 0.001	<0.001	<0.1	- 1.1
16.0 ± 1.77	12.6 ± 0.44	24.4 ± 2.94	${ }^{1}$	${ }^{1}$
N	VS	NS		
	Series L:			
$14.2=0.42$	11.4 ± 0.03	26.5 ± 1.32		
49.6 ± 3.11	$31.4=1.82$	37.3 ± 1.74		
<0.001	<0.001	<0.001		
21.2 ± 3.34	14.1 ± 0.70	$3 \mathrm{~B} .4 \pm 1.00$	<1.0)	1.17
NS	<0.05	<0.01		

${ }^{a}$ Mean \pm standard error. ${ }^{b}$ Free alcohol. ${ }^{c} \mathrm{NS}=$ not significant. ${ }^{d} V$ s. testosterone propionate.

Compounds of still lower activity are 3, 7, and 11. which have less than $5-10 \%$ the potency of the standard. Finally, $\mathbf{4}, \mathbf{5}, \mathbf{1 0}, \mathbf{1 3}$, and 18 are inactive. Thus. in the substituted cyclopropane, the order of activity is $\mathrm{CHO}>\mathrm{H}>\mathrm{CH}_{2} \mathrm{OH}>\mathrm{CO}_{2} \mathrm{Et}, \mathrm{H}_{2} \mathrm{~N} \ggg \mathrm{CO}_{2} \mathrm{H}$, $\mathrm{CONCH}_{2} \mathrm{CH}_{2}, ~ \mathrm{Ie}_{3} \mathrm{~N}^{+}$, Br .

Two minor conclusions can be drawn from these data. l'irst, activity can be retained or enhanced in substituted compounds. This would not be expected on steric grounds if α-face adsorption were involved, but is in harmony with adsorption on the β face of the steroid.

Secondly, activity of a given :malog is detemmed by the structure of the substituent on the cyclopropanc: ring. Therefore, it is now established that in principle such a series of analogs could shed light on the elec-
tronic requirements in the A ring, as ontlincal proviously. However, the small number of active compounds makes the present series inadequate for this purpose, and a further discussion must await the connpletion of another series of compounds, currently being carried ont in our laboratory.

Experimental Section ${ }^{19}$

The method ${ }^{18}$ employed in the androgenic-myotrophic assily has been discussed previously. ${ }^{2}$
$2 \xi, 3 \xi-$ Methano- 5α-estran-17 β-ol (Isomer A) (3).-A stirred mix. ture of $8.5 \mathrm{~g}(0.10 \mathrm{~mole})$ of $\mathrm{Zn} \cdot \mathrm{Cu}$ couple, 30 g of $\mathrm{CH}_{\mathrm{H}} \mathrm{I}$, and 60 nug of 1 , in 200 nul of andedrous Fte O was heated under reflan for 1 hr. Theul 3.0 g (0.00! mole) of 1^{2} dissolved in andedrons EL: (1 was added. The mixture was heated under reflux for 90 hr :mu then filtered through ahmina, washed with dilute HCl sohtion and $\mathrm{H}_{2} \mathrm{O}$, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right.$). After evaporation of the solvent.
the residue was dissolved in 100 ml of 5% methanolic KOH solution. It was refluxed for 0.5 hr and the product was obtained by evaporation of the MeOH and addition of $\mathrm{H}_{2} \mathrm{O}$. It was recrystallized from MeOH to afford 1.2 g of material, mp $105-110^{\circ}$. Further recrystallization gave the analytical sample, $\mathrm{mp} 114-115^{\circ},[\alpha]^{28} \mathrm{D}+77^{\circ}\left(c \mathrm{l}, \mathrm{CHCl}_{3}\right)$. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}\right) \mathrm{C}$, H.

From the mother liquid there was obtained 0.4 g of isomer $\mathbf{B}(\mathbf{4})$, $m p 96-102^{\circ}$. Recrystallization from aqueous MeOH gave the analytical sample, $\mathrm{mp} 104-105^{\circ},[\alpha]^{28} \mathrm{D}+62^{\circ}$ (c 1, CHCl_{3}). Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}\right) \mathrm{C}, \mathrm{H}$.
$2 \alpha, 3 \alpha$-(β-Carboxymethano)-5 α-androstan- 17β-ol (5).-A solution of 1.0 g (0.0025 mole) of 7 in 100 ml of 5% methanolic KOH was refluxed for 30 min , concentrated in vacuo, and poured into 300 ml of ice-water. Upon acidification to pH 1 with $20 \% \mathrm{HCl}$ crystalline product precipitated. It was filtered and dried to afford $0.8 \mathrm{~g}(96 \%)$ of $5, \mathrm{mp} 258-260^{\circ}$. Several recrystallizations from MeOH furnished the analytical sample, $\mathrm{mp} 265^{\circ}-266^{\circ}$, $[\alpha]{ }^{20} \mathrm{D}+14^{\circ}\left(c 0.4\right.$, dioxane). Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}$.
$2 \alpha, 3 \alpha$-(β-Carboxymethano)-5 α-androstan-17-one (6).-A solution of 1.20 g of 5 in 200 ml of acetone was allowed to react with 2 ml (excess) of $8 \mathrm{~N} \mathrm{CrO}_{3}$ solution at 27°. After 20 min , the excess reagent was destroyed with $i-\mathrm{PrOH}$ and the mixture was filtered. After the addition of a small quantity of $\mathrm{H}_{2} \mathrm{O}$, the mixture was evaporated under reduced pressure to give 0.98 g (82%) of product, mp $280-281^{\circ}$. Several recrystallizations from MeCN furnished the analytical sample, mp $282-283^{\circ},[\alpha]^{20} \mathrm{D}$ $+76^{\circ}\left(c \mathrm{l}, \mathrm{CHCl}_{3}\right)$, nmr $0.851 \mathrm{ppm}(19-\mathrm{H})$. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{3}\right)$ C, H.
$2 \alpha, 3 \alpha$-(β-Carbethoxymethano)-5 α-androtan- 17β-ol Acetate (7). - A mixture of 4.0 g (0.0126 mole) of 2^{5} and 0.4 g of anhydrous CuSO_{4} was heated to 120° and $7.0 \mathrm{~g}(0.06 \mathrm{~mole})$ of ethyl diazoacetate was added dropwise. The mixture was kept at 120° for 15 min under stirring and 10 ml of $10 \% \mathrm{HOAc}$ was added to decompose the excess reagent. The resulting mixture was cooled and extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the extracts were combined, washed with $5 \% \mathrm{NaHCO}_{3}$ solution, and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$). The $\mathrm{Et}_{2} \mathrm{O}$ solution was evaporated in vacuo and the oily residue was treated with 2 ml of cold MeOH to afford, after filtration, 2.3 $\mathrm{g}(46 \%)$ of the crude product, $\mathrm{mp} 120-125^{\circ}$. Several recrystallizations from MeOH gave the analytical sample, $\mathrm{mp} 148-150^{\circ}$, $[\alpha]^{20} \mathrm{D}-15^{\circ}\left(c \mathrm{l}, \mathrm{CHCl}_{3}\right)$, nmr $0.778 \mathrm{ppm}(19-\mathrm{H})$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}$.

Ethylcarbonic $2 \alpha, 3 \alpha$-(β-Carboxymethano)-5 α-androstan-17one Anhydride (8).-A solution of $0.40 \mathrm{~g}(0.0012 \mathrm{~mole})$ of 6 in 60 ml of $\mathrm{Me}_{2} \mathrm{CO}$ and 6 ml of $\mathrm{H}_{2} \mathrm{O}$ was cooled to 0° and 0.15 g (0.0014 mole) of $\mathrm{Et}_{3} \mathrm{~N}$ in 2 ml of $\mathrm{Me}_{2} \mathrm{CO}$ was added. While maintaining the temperature at 0°, a solution of $0.144 \mathrm{~g}(0.0013$ mole) of ethyl chloroformate in 2 ml of $\mathrm{Me}_{2} \mathrm{CO}$ was added slowly. The mixture was stirred at 0° for 1 hr and the solvent was evaporated giving $0.33 \mathrm{~g}(69 \%)$ of crude product, $\mathrm{mp} 143-144^{\circ}$. Several recrystallizations from MeCN furnished the analytical sample, $\operatorname{mp} 14 \overline{5}-147^{\circ},[\alpha]^{20} \mathrm{D}+173^{\circ}\left(c \mathrm{I}, \mathrm{CHCl}_{3}\right)$, nmr 0.820 ppm (19-H). Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{5}\right) \mathrm{H}$; C: calcd, 71.61 ; found; 71.20 .
$2 \alpha, 3 \alpha-[\beta$-Carbo(1 -aziridyl)methano]-5 α-androstan-17-one (9). -To a stirred mixture of $0.10 \mathrm{~g}(0.0024 \mathrm{~mole})$ of ethylenimine and $0.125 \mathrm{~g}(0.0012$ mole $)$ of MeNH_{2} in 5 ml of $\mathrm{C}_{6} \mathrm{H}_{6}$ was added $0.46 \mathrm{~g}\left(0.0012\right.$ mole) of 8 in 3 ml of $\mathrm{C}_{6} \mathrm{H}_{6}$ during 1 hr at 0° and the reaction was stirred for an additional 1 hr at 0°. The solvent was evaporated in vacuo and the gummy residue was treated with a small amount of cold hexane. The precipitated product $(0.23$ g) (52%) was recrystallized from hexane to furnish the analytical sample, $\mathrm{mp} 142-144^{\circ},[\alpha]^{20} \mathrm{D}+91^{\circ}\left(c \mathrm{l}, \mathrm{CHCl}_{3}\right)$. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{33^{-}}\right.$ $\left.\mathrm{NO}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
$2 \alpha, 3 \alpha-[\beta$-Carbo(1-aziridyl)methano]-5 α-androstan-17 $\beta=0$

[^1](10).-A solution of 0.100 g of 9 and 0.2 g of $\mathrm{LiAlH}(t-\mathrm{BuO})_{3}$ in 10 ml of anhydrous THF was kept at 0° for 1 hr . The product was isolated by $\mathrm{Et}_{2} \mathrm{O}$ extraction and recrystallized from MeCN to give the analytical sample, $m p 175-176^{\circ},[\alpha]^{20} \mathrm{D}-16^{\circ}$ (c 1, CHCl_{3}), nmr $0.788 \mathrm{ppm}(19-\mathrm{H})$. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{NO}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
$2 \alpha, \mathbf{3} \alpha$-(β-Aminomethano)- 5α-androstan-17 β-ol Hydrochloride (11).-The crystalline free amine derived from $1.50 \mathrm{~g}(0.0044$ mole) of 12 was dissolved in MeOH and reduced with 0.6 g of NaBH_{4}. The excess NaBH_{4} was decomposed by addition of 5% HCl and the mixture was concentrated in vacuo and poured into ice water. The aqueous solution was made alkaline and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The product was rather insoluble in $\mathrm{Et}_{2} \mathrm{O}$ and partially precipitated. The $0.85 \mathrm{~g}(63 \%)$ of crude amine obtained was dissolved in anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and acidified with saturated ethereal HCl solution. The precipitated salt was filtered and recrystallized from $\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$ to give the analytical sample, mp 279$280^{\circ},[\alpha]^{20} \mathrm{D}+22^{\circ}\left(c 0.5, \mathrm{CH}_{3} \mathrm{OH}\right)$. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{ClNO}\right) \mathrm{C}, \mathrm{H}$, N.
$2 \alpha, 3 \alpha$-[β-Aminomethano]-5 α-androstan-17-one Hydrochloride (12).-Compound 6 ($2.50 \mathrm{~g}, 0.0076 \mathrm{~mole}$) was converted to 8 as described. To the resulting reaction mixture was added a solution of $0.815 \mathrm{~g}(0.012 \mathrm{~mole})$ of NaN_{2} in 6 ml of $\mathrm{H}_{2} \mathrm{O}$. The mixture was stirred for 1 hr and poured into 500 ml of ice water. The white precipitate was collected by filtration and dried to afford $2.42 \mathrm{~g}(73 \%)$ of the crude azide, $\mathrm{mp} 122^{\circ}$ (evolution of N_{2}).

This azide (2.42 g) was dissolved in 12 ml of toluene and heated on a steam bath until no more nitrogen was evolved (l hr). Removal of toluene in vacuo afforded a yellowish oil which was shown to be almost pure isocyanate by its infrared spectrum ($\nu_{\text {max }}^{\text {neat }}$ $2230 \mathrm{~cm}^{-1}$). The isocyanate was suspended in 16 ml of 20% aqueous HCl and the mixture was heated under reflux for 1 hr , during which time the amine HCl precipitated. Recrystallization from 1% aqueous HCl gave $2.00 \mathrm{~g}(78 \%)$ of colorless needles. Further recrystallization from $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{Et}_{2} \mathrm{O}$ gave the analytical sample $[\alpha]^{20} \mathrm{D}+92^{\circ}\left(c \mathrm{l}, \mathrm{CH}_{3} \mathrm{OH}\right)$. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{ClNO}\right) \mathrm{C}, \mathrm{H}$, N.
$2 \alpha, 3 \alpha$-(β-Dimethylaminomethano)-5 α-androstan-17 β-ol methochloride (13) was obtained from 11 with MeI and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH . A solution of 0.36 g of the methiodide in 5 ml of MeOH was passed through 10 g of IRA- 400 resin which was washed with MeOH previously. The eluates were collected until neutral and evaporated to dryness. Several recrystallizations from $\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$ gave the analytical sample, $\mathrm{mp} 280-283^{\circ}$ dec, $[\alpha]^{20} \mathrm{D}-31^{\circ}\left(c 1, \mathrm{CH}_{3} \mathrm{OH}\right)$. Anal. $\left(\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{ClNO} \cdot \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
$2 \alpha, 3 \alpha$-(β-Dimethylaminomethano)-5 α-androstan-17-one methochloride (14) was obtained from 12 with MeI and KOH in MeOH solution. The crude product was recrystallized from $\mathrm{H}_{2} \mathrm{O}$ to give $0.43 \mathrm{~g}(60 \%)$ of the quaternary iodide, $\mathrm{mp} 272-276^{\circ}$. One additional recrystallization from $\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$ raised the melting point to $280-283^{\circ}$.

A solution of the iodide in MeOH was passed through IRA-400 resin previously washed with MeOH . Recrystallization from $\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$ gave the analytical sample, mp 274-275 ${ }^{\circ}$ dec, $[\alpha]{ }^{20} \mathrm{D}+58^{\circ}\left(c 0.5, \mathrm{CH}_{3} \mathrm{OH}\right)$. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{ClNO}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
$2 \alpha, 3 \alpha$-(β-Aldehydomethano)-5 α-androstan-17 β-ol (15).-Reduction of 0.68 g (0.0019 mole) of 10 in 180 ml of $\mathrm{Et}_{2} \mathrm{O}$ with 0.07 g (0.0019 mole) of LiAlH_{4} at 0° for 1 hr , decomposition with 10 ml of cold $5 \mathrm{NH}_{2} \mathrm{SO}_{4}$, and work-up using preparative tlc on silica gel gave $16(27 \%)$ and $15(55 \%)$. The product 15 had mp 158$160^{\circ},[\alpha]^{20} \mathrm{D}+30^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right)$. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$.
$2 \alpha, 3 \alpha-(\beta$-Hydroxymethylmethano $)-5 \alpha$-androstan-17 β-ol (16). -A solution of 0.100 g of 9 in 15 ml of EtOH was treated with 0.04 g of NaBH_{4}. The crude product (98%) was crystallized from $\mathrm{MeCN}-\mathrm{MeOH}(7: 3)$ to give the analytical sample, mp 217$218^{\circ},[\alpha]^{20} \mathrm{D}+24^{\circ}$ (c 0.5, dioxane), nmr $0.762 \mathrm{ppm}(19-\mathrm{H})$. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$.
$2 \alpha, \mathbf{3} \alpha$-(ξ-Bromomethano)-5 α-androstan-17 β-ol Acetate (18).Compound 19 was reduced with $\mathrm{LiAlH}(t-\mathrm{BuO})_{3}$ in THF solution in the usual way. Acetylation of the resulting alcohol with $\mathrm{Ac}_{2} \mathrm{O}$ in pyridine sohution gave 18. Recrystallization from EtOH gave a sample, mp $159-160^{\circ}$, which was a mixture of bromo epimer's as shown by a multiplet at $146-157 \mathrm{~Hz}$ in the nmr spectrum. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{BrO}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{Br}$.
$2 \alpha, 3 \alpha-$ Methano-5 α-androstan-17 β-ol.-To a mixture of approximately 2.0 g of Raney Ni and 0.2 g of the product of the reduction of 19 with $\mathrm{LiAlH}(t-\mathrm{BuO})_{3}$ in 150 ml of MeOH was added 1.0 g of KOH in 5 ml of $\mathrm{H}_{2} \mathrm{O}$. The resulting mixture was shaken under H_{2} at $2.1 \mathrm{~kg} / \mathrm{cm}^{2}$ for 6 hr . The catalyst was removed, the filtrate was concentrated in vacuo and $\mathrm{H}_{2} \mathrm{O}$ was added giving 0.2 g of crude product. Upon separation by preparative tlc $(35 \%$
petroleun ether ($\mathrm{O}_{\mathrm{p}}: 30-60^{\circ}$) in $E \mathrm{ta}_{2} \mathrm{O}$ was used in the development), there was obtained 0.076 g of $2 \alpha, 3 \alpha \cdot$ nethanol- $\overline{0} \alpha$-an-drostan- 17β-ol, $\mathrm{mp} 129-130^{\circ}$ after recrystallization from MeOH. Ir and nmu spectra and mixture melting point were indistinguishable from those of the authentic sample.:

The compound with lower R_{f} value was isolated in a vield of (1.00.3 g and was shown to be a single isomer of $2 \alpha, 3 \alpha$-(bromomethano) $\mathbf{5} \alpha$-androstan- $17 \beta-0 \mathrm{~L}$ One recristallization from EoOH gave colorless cystals: mp 14.)-146 ; mmi 0.7. (C. 19
 (triplet, $17 \alpha-\mathrm{H}$) ppm.
$2 \alpha, 3_{\alpha-1} \xi-$ Bromomethano $)-5 \alpha$-androstan-17-one (19). .-T0:1 reftuxing mixture of $1.50 \mathrm{~g}(0.0045$ mole $)$ of 6 and 2.00 g of $\mathrm{r} \cdot \mathrm{a}$ Hg() in anhydrous CCl_{4} was added $0.7-\mathrm{g}$ (0.0045 mole of Br in 5 nul of anhydrons CCl_{4}. The resulting mixture was refluxed genlly for 1.5 hr and was filtered after cooling. The clear yellow
 evaporated in vacuo. The oily residue was treated with petrolemm ether (hp 30 t 60°) the give 0.60 g (36, of crystals. Reveral recrystallizarions from Me? CO gave the analytionl sample: mp
 ($\because 1$

Synthesis of 6,7-Difluoromethylene Corticoids ${ }^{1}$

I. T. Hambison, C. Beari, L. Kirkham, B. Lewls, I. M. Jamieson, W. Rooks, ${ }^{2}$ anid J. H. Firele
Insilute of Scemid Chemistry, Syntex Resench, I'alo Allo, Colifornia
Hecived March 12, 1068

Abstract

The synthesis of $6 \alpha, \overline{7} \alpha$ - and ($\beta \beta, 7 \beta$-difnoromethylene corticoids by addition of "difluorocarbene" to selected $\Delta^{1,6-3}-\mathrm{ket}$ steroids is described. The observed potentiation of corticoid tectivity by both α - and β-face diflinor, methylene adducts is inconsistent with an andinflammatory receptor site which requires binding to rings A and B of the steroid molecule.

The enormons effort expended in the synthesis and modification of cortisone has led to the accumulation of a considerable body of empirical knowledge relating structure to antiinflammatory activity. Within the last two decades every position of the cortisone molecule has been subject to scrutiny and chemical modification. These efforts have resulted in the discovery of a number of activity-enhancing and activity-modifying groups. which alone or in combination have led to the development of several clinically useful corticoids.

Although the primary locus of corticoid action is miknown, the hypothesis is generally accepted that biological action is the result of an interaction with a complementary receptor site. Considerable speculation as to the nature and geometry of the receptor wite has led to the suggestion that corticoids interact with at surface complementary to a portion of the β face of the steroid molecule. ${ }^{3-6}$
Sarett ${ }^{10,4}$ has further defined the properties of the receptor by suggesting rigid geometry with provisions for specific binding to the 11β-hydroxyl and to the 3 ancl ${ }^{2} 0$-keto groups of hydrocortisone.' Additional interactions are provided by the smmation of London

[^2]forces over the total of the β face of the steroid molecinle.
Alternatively, Bush envisages little if any binding to rings A and B with the major interactions being provided by the 11β-hydroxyl, rings C and D, and the side chain. With this lypothesis, the requirements of the receptor would not be inconsistent with axial β-face B -ring substituents. The inactivity of 6β-halo and 6β-methyl corticoids, an important consideration int the previons proposal, ${ }^{3,4}$ was rationalized by the nuggestion that a general distortion of the steroid molecule due to intramolecular interaction with the axial 6 -substituent interfered with binding. 6.8
Clearly a critical evaluation of these hypotheses must be based on biologically active compounds." In particular, an active corticoid substituted with bulky β-face B -ring substituents would provide evidence in support of the proposal that rings A and B are not involved in binding to the complementary surface of the receptor:
We have recently reported an efficient metholl for the preparation of 6,7 -difluoromethylene steroids. ${ }^{10,11}$ The application of these findings to the corticoirl series provided an opportunity to further evaluate the recpirements for biological activity:
Addition of "diflnorocarbene" to the dienones 1a, b gave a mixture of products from which the $6 \alpha,-$ 7α-difluoromethylene adducts $\mathbf{2 a}, \mathbf{b}$ were isolated after

[^3]
[^0]: (7) N. S. Bhacca and D. H. Williams. "Applications of Nmr Spectroscopy in Organic Chemistry." Holden-Day. Inc., San Francisco. Calif., 1964, p 19.
 (8) K. Tori and K. Kitahonoki, J. Am. Chem. Soc., 87, 386 (196:).
 (9) J. Cristel and W. C. Firth, J. Org. Chem., 26. 280 (1961).
 (10) J. A. Davis, S. Carroll. J. Bunds, and D. Jolınson, idid., 30, 415 (1965).
 (11) R. H. Johnson and R. K. Ingham, Chem. Kev., 56, 219 (1956).

[^1]: (19) Melting points were determined with a Thomas-Hoover apparatus equipped with a corrected thermometer. Ir spectra were obtained with a Beckman 1R-8 or Perkin.Elmer 337 instrument. Microanalyses were per. formed hy the Microanalytical Department. University of California, Berkeley, Cialif. Nmrspectra were obtained at a field strengtlo of 60 MH on samples in CDCl_{3} solutions on a Varian $\mathrm{A} \cdot 60 \mathrm{~A}$ instrument, using TMS as internal standard. When only small amounts of sample were available, a Varian C-1024 computer was used for time averaging, Optical rotations were obtained in a $0.5-\mathrm{dm}$ tube with a Rudolph photoelectric polarimeter. Glpe was carried out using a Barber-Coleman Model 5000 system employing $1.83-\mathrm{m}$-tuhe columns of $2 \% \mathrm{SE}-30$ on Gas Chrom Q or Z, He carrier. H2 flame letection, column temperatures of $220-240^{\circ}$, "on column" injection at 290°, and detector temperatures of 250°. Where analyses are indicated only by symbol of the elements or functions, analytical results obtained for those elements or functions were within $\pm 0.4 \%$ of the theoretical values.

[^2]: 11) I'ublication 340 from the Ssutex 1 natitutate of Steroial Chemistry, For I (ul) licatiun 339 see P. H. Nelson, J. W. Murphy, J. A. Edwards, and J. 11. fried, J. Am. Chem. Soc., in press. This publication is also part VI of the nerics, Methylenation of Unsaturated ketones. Mart V: G. Jarzia, N. H. Dyson, Y. T.1farrison, J. A. Edwards, and J. 1H. Fried, Steroids, 9. 387 (196;). A prortion of this material was presented al the symposium on Antiinflammatory Agems sponsored by the Medicinal Chemistry Section at the 1bthl National Heeting of the Anerican Chenical Suciety, Chicago. 111., Sept 1967. (2) Lustitute of Formume Biology, Syntex Research.
 (3) L.. I1. Sarelt. An in. N.Y. Acad. Sci., 82, 802 (19j9).
 (1) L.. 1. Sarett, A. A. Patehett, and S. L. Steehnan, Progr. Drug Res., 5. $1: 3$ (1963).
 (i) J. Fried, "Mteclanishl oi Action of Steroid Hormones." The MacMillan Go., New York, N. Y.. 1961, p 232.
 (6) I. 1.. Bushi, 1tharmacol. Rel., 14, 44: (1963).
 (5) The 3 -ketone can be replaced by a 2,3 -fused heterocyclic ring with a considerable enhancement of biological activity; cf. R. Hirschmann, N. G. Stuinberg. P. Buchschacher, J. H. Friel, (. I. Kenc. M. Tishler, und s. I.,
 an.1 11. Mrazk, Steroid, 2. 39M (19633); H. Mrozik, P. Buchsehather. J, Hhanal, and J. 11. Friod, J. Meht. Chem., 7. 58.4 1964); P. Dekuggieri, (

[^3]: (8) The contrating antionflamatory activities of b及- anh 6α-Htur., eorticoids can also l, auributed to a more rapid metabolic reduction of whe C-3 ketone in the 6β-Hucro series; of. H. J. Ringold. S. Rainachandran, and E. Forchielli, Biochim. Biophy.s. Acta, 82, 143 (1964).
 (9) Since the liological action of hormones depends upon numerons l, ioMentical and physicuchemical equilibria involved in the process of alsorption, distribution, and melabolism, absence of biological activity cannot lee safely ascribed to the lack of binding and, therfore, inferences as to the geometry of the recepitor sile based on inactive compounds are open to question.
 (10) C. Beard, X. H1. Dyson, and J. 1.E. Fried, Tetrahedron Letters, 3281 (1966): C. Beard, 1. I'. Harrimon, 1. Kirkham, and J. H. Fried, ihid. 328 , :1966).
 Ficiel, Stroids, 9, 387 (1967); (: Beara, B. Berkoz, N. If. Dywon, 1. T.
 d. H. Frient, it, he phinishtr,

